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ABSTRACT: The optical properties of color centers in
nanodiamonds are widely used in various branches of
photonics and interdisciplinary studies. Here, we report on
an experimental study of the fundamental eigenmodes of
subwavelength diamond nanoparticles. The eigenmodes reveal
themselves as scattering resonances, which were measured by
single-particle dark-field spectroscopy and calculated both
numerically and analytically. The resonances experience a red-
shift with increasing particle size, and in the case of an
anisotropic particle, they change depending on the polarization
of the input light. As an example of an application, the Purcell
enhancement of the dipole emission from such nanodiamonds
is numerically demonstrated. This study demonstrates a simple way to improve the efficiency of diamond-based sensors and
single-photon sources by choosing nanoparticles of optimal size and shape.
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Nanodiamonds are a novel class of objects with a plethora
of applications in various branches of photonics and

interdisciplinary studies. They are extensively used as low-
toxicity, nonbleaching, luminescent biomarkers,1−4 precise
nanoscale magnetometers,5−8 and thermometers.9 Some that
contain exactly one center can be used as single-photon
sources10−16 and nodes in quantum computing networks.17,18

In all of the listed applications, the spectral properties of
nanodiamonds should be taken into account. They are
especially important in quantum optics, where efficient photon
emission into a single optical mode is of paramount
importance. Conventionally, this is done by coupling color
centers to waveguides10,11 and resonators;12−16 however, the
intrinsic optical resonances of nanodiamonds themselves are
routinely omitted from consideration. Few studies have
mentioned the effects of the particle size on the luminescence
in submicrometer diamonds,16,19−22 and there has been no
comprehensive study on this problem so far.
High-index nanoparticles possess a set of eigenmodes,

including the fundamental magnetic dipole mode. Due to
their manifestation in scattering spectra, they are also referred
to as Mie resonance modes. Currently, the magnetic dipole
mode has been verified in silicon,23,24 germanium,25,26 gallium
arsenide,27 and barium titanate perovskite28 nanoparticles in the
visible range and in tellurium29 microparticles in the mid-
infrared. This mode has become the underlying reason for

optical magnetism and led to a number of novel devices, such
as superdirective scatterers30−32 and Huygens-type,33 holo-
graphic,34 beam-deflecting,35,36 and beam-shaping metasurfa-
ces.36,37 In addition, it has provided for the enhancement of
nonlinearities,38−40 emission shaping,41 and Raman response42

by all-dielectric nanostructures. The high refractive index of
diamond allows for the observation of optical magnetism in
nanodiamonds, although no evidence of this has been provided
so far.
In this article, we demonstrate the fundamental eigenmodes

of subwavelength nanodiamonds by scattering spectroscopy
performed on single particles with predetermined sizes and
shapes. Dark-field scattering spectroscopy reveals pronounced
magnetic dipole and quadrupole modes, as verified by
calculations performed both analytically and numerically.
Further applications of the observed resonances are discussed,
and as an example, the Purcell enhancement of dipolar
radiation is numerically demonstrated.
Throughout this work, we will limit the consideration of the

eigenmodes to magnetic dipole, electric dipole, magnetic
quadrupole, and electric quadrupole modes, as they are the
lowest-order modes and provide the highest light confinement
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within a dielectric sphere. The magnetic modes are typically of
higher quality factors than the electric ones, and therefore, they
are expected to be more apparent in the scattering spectra. In
Figure 1a, a schematic representation of the electric and

magnetic fields of the lowest-order magnetic Mie resonances in
the nanodiamonds is shown. The particles are illuminated by
light propagating vertically and polarized in the plane of the
schematic. At a certain ratio between the particle size d and the
wavelength λ, the electric field on the upper side of the particle
is in antiphase with the electric field on the bottom side, which
causes circular displacement currents and an enhancement of
the magnetic field in the center, leading to the excitation of the
magnetic dipole. At the magnetic quadrupole resonance, which
is excited at larger d/λ ratios, two magnetic dipoles of opposite
phases are efficiently excited. Depending on the size and shape
of the particle, its eigenmodes are excited at different
wavelengths. In the case of identical shapes, the larger the

particle is, the farther to the red the resonances are located. In
our experiments, particles of a few hundred nanometers in size
that were grown by chemical vapor deposition from detonation
seeds on a sapphire substrate were studied; see Supporting
Information, Section I, for details of the fabrication procedure.
The substrate with the grown diamonds was mapped
beforehand so that we could match the images from the
microscopes to the measured spectra; see Supporting
Information, Figure S2, for the maps. As indicated in the
inset of Figure 1b, the shape of the particles is not spherical, but
the use of a spherical shape for the calculations gives
appropriate results.
In Figure 1b, a scattering spectrum of a typical nanodiamond

particle measured by dark-field single-particle spectroscopy is
shown, as indicated by the black curve. The illumination light
was unpolarized in the measurements; see Supporting
Information, Section II, for a description of the setup. A
scanning electron micrograph of the particle is shown in the
inset. Two peaks are clearly identified in the spectrum, with the
resonance at λ = 585 nm being of a larger quality factor than
that of the resonance at λ = 800 nm. The results of a finite-
difference time-domain (FDTD) simulation that are given in
Figure 1b by the purple curve have excellent agreement with
the experimental measurement results. In this simulation, a
diamond sphere with a diameter of 320 nm that was placed on
a sapphire substrate was illuminated by plane-wave radiation,
and the far-field scattering was analyzed to simulate the
experimental light collection conditions; see Supporting
Information, Section V, for details of the calculation.
Scattering spectra for an isolated spherical particle can also

be calculated analytically by Mie theory.43 Figure 1c presents
the spectrum of the overall scattering efficiency Q = C/πr2,
where C is the scattering cross section and r = 160 nm is the
radius of the sphere, for a sphere in a vacuum and the
contributions of the different Mie modes to the scattering
efficiency. In the absence of the substrate, the peaks are more
clearly identified, but their positions are not significantly
changed. Plotting the contributions of individual Mie
coefficients separately shows that the peak at λ = 800 nm is
associated with the magnetic dipole resonance, while the peak
at λ = 573 nm is due to the magnetic quadrupole resonance.
To observe the size dependence of the resonance positions,

diamond nanoparticles with different sizes and shapes were
analyzed. Figure 2 presents typical measured scattering spectra
of such nanodiamonds. Depending on the dimensions of the
particles, one or two peaks can be identified in the spectral
region of interest. For the smallest particles, one peak is
observed, which we associate with the magnetic dipole
resonance. As the particle size increases, the magnetic dipole
resonance shifts to the red, and a higher-quality peak appears in
the registration range, which is due to the magnetic quadrupole
excitation.
Along with their scattering properties, more than 20

nanoparticles were analyzed using scanning electron micros-
copy. For every particle, the area A and perimeter P were
determined based on the images. Then, the effective size
( π=d A2 / ) and circularity ( f = 4πA/P2) were calculated.
Figure 3 shows the positions of the resonance peaks as a
function of the effective particle size. The experimental
dependences are shown in Figure 3a. Two groups of points
are clearly identified on the plot. We associate one of them with
the magnetic dipole resonance (blue circles) and the other with
the magnetic quadrupole resonance (purple circles). The

Figure 1. Mie resonances in nanodiamonds. (a) Schematic
representation of the fields in nanodiamonds upon excitation of the
magnetic dipole (md) and magnetic quadrupole (mq) modes. (b)
Unpolarized scattering spectrum from a typical nanodiamond (a
scanning electron micrograph is shown in the inset) and FDTD-
simulated spectrum of scattering by a sphere with a diameter of 320
nm under the experimental conditions of the collection. (c) Scattering
from a free-standing sphere with a diameter of 320 nm calculated by
Mie theory.43 The overall scattering efficiency and the contributions of
the electric (e) and magnetic (m) dipole (ed, md) and quadrupole (eq,
mq) modes are shown.
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dispersion of the data points is partially caused by the variety of
the particle shapes available. If one chooses only sphere-like
particles ( f > 0.9, indicated by filled circles on the plot), the
dispersion is lower.
The scattering efficiency of a free-standing diamond sphere

as a function of the wavelength and the particle size was
calculated using Mie theory43 and is shown in Figure 3b. The
same dependence obtained by the FDTD simulations for a
diamond sphere on a sapphire substrate under the experimental
collection conditions is given in Figure 3c. The resonances are
not as clear without the substrate, but their positions do not
change significantly. The positions of the resonances obtained
from the FDTD simulations are plotted in Figure 3a by dashed
lines. The experimentally observed shift of the resonances is in
good agreement with the calculation, but the experimentally
obtained resonances are shifted to the blue side of the spectrum
compared to the calculation results. The resonances of the
sphere-like particles are closer to the calculation results.
The shapes of nanoparticles greatly affect their optical

properties, including those that depend on the polarization of
incoming light. Anisotropy is a useful degree of freedom when
tailoring the optical properties of Mie-resonant nanodiamonds.
The scattering by an anisotropic nanodiamond at approx-
imately 700 nm is shown in Figure 4a as a function of the input
polarization. The change in scattering at this wavelength is
approximately 30% at a particle circularity of 0.84. Figure 4b
presents scattering spectra with the illumination polarized along
the perpendicular directions. FDTD-simulated scattering for a
prolate spheroid with a long axis of 400 nm and a short axis of
330 nm is shown in Figure 4c. Although the spheroid
approximation is the simplest, the calculated spectra are in
good qualitative agreement with the experimental data.
The resonances studied in this work can reveal themselves in

a variety of processes in single nanodiamonds. For instance,
Mie resonances were mentioned as a possible explanation of

the experimentally observed large dispersion in the lifetime of
the excited state of chromium-related centers in nanodiamonds
of various sizes.21 The reductionor increasein the lifetime
of the excited state in a resonator compared to that observed in
a homogeneous environment is called the Purcell effect. This
effect has been theoretically shown to occur during the
excitation of Mie resonances in a high-permittivity sphere44

and, consequently, may be observed in nanodiamonds, as
numerically confirmed for a number of geometries.20,45,46 The
Purcell factor calculated for an electric dipole located inside a
subwavelength diamond sphere has been previously shown to
depend non-monotonically on the particle size.20−22 As we
show below, this dependence can be interpreted by coupling
with the particle eigenmodes, and new features can be found in
the dependence on the position of the dipole inside the sphere.
The Purcell effect in a diamond nanoparticle was quantified

using FDTD simulations of the emission of an oscillating
electric dipole located at different positions inside a free-
standing diamond sphere with a diameter of 320 nm. The
Purcell factor was determined by calculating the emission
energy of the dipole and dividing it by that emitted by the
dipole in bulk diamond. The result is shown in Figure 5a,b as a
function of the dipole position and the wavelength of radiation
in a vacuum corresponding to the dipole oscillating frequency.
The spectral dependence of the Purcell enhancement can be

Figure 2. Unpolarized scattering spectra of nanodiamonds with
effective diameters of 281 nm (black), 306 nm (blue), 355 nm
(purple), 386 nm (red), and 394 nm (yellow) normalized by the
maximum value and vertically shifted by the value of 0.3 for better
readability. The corresponding scanning electron micrographs are
given on the right side of the figure.

Figure 3. Positions of the Mie resonances depending on the size of the
diamonds. (a) Experimental dependences of the resonance peak
positions in the unpolarized scattering spectra. The points for particles
with circularity f > 0.9 are shown as filled circles. The lines show the
resonance peak positions obtained by FDTD calculations for spherical
shapes under the experimental collection conditions. (b) Scattering by
a free-standing sphere calculated by Mie theory.43 (c) FDTD-
calculated scattering by a sphere on a sapphire substrate under the
experimental collection conditions.
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interpreted by comparison with the scattering spectra of the
fundamental modes. The contributions of the four fundamental
modes to scattering from the same sphere are shown in Figure
5c. When a radiating dipole is located in the center, the Purcell
enhancement takes place only on the blue side of the electric
dipole scattering resonance. When the dipole is significantly
displaced from the center, the Purcell factor strongly depends
on the dipole orientation. In the case of the radial direction
represented by Figure 5a, an enhancement takes place around
the wavelength corresponding to the electric quadrupole
resonance, whereas the magnetic modes have no effect on
the dipole radiation because of the symmetry. In the case of the
tangential direction (Figure 5b), the Purcell factor is strongly
enhanced at the wavelengths corresponding to the magnetic
dipole and quadrupole resonances.
The maximum Purcell factor observed for the nanoparticles

under consideration is equal to 2.4; this value is significantly
larger than the value of 0.06 reported for a diamond sphere in

the Rayleigh limit.20,47,48 The change of the shape to spheroids
leads to the shift of the resonances, but the values of the Purcell
enhancement do not change dramatically; see Supporting
Information, Section VI, for details. The almost two-order
enhancement of the Purcell factor, compared to a nonresonant
nanoparticle, clearly demonstrates the importance of taking Mie
resonances into account when considering the optical proper-
ties of single nanodiamonds. In contrast to smaller nano-
diamonds,49,50 Mie-resonant particles provide nonblinking
luminescence at the same time, being much more compact
than other resonators.12−16,48 At the wavelength of the
magnetic quadrupole, the Purcell enhancement for the
tangentially oriented dipole occurs for any position of the
dipole within the nanodiamond. As shown in the previous
sections, the resonances can be easily adjusted by changing the
size of the particle to obtain the optimum value of the Purcell
factor for a given wavelength of a color center used.
In addition to the change in the emission rate, resonators

also affect the directivity of the dipole emission and, with an
appropriate design, can be used as directional antennas.31,51

With methods that improve the collection efficiency,20,46,52

Mie-resonant nanoparticles shown here can become a powerful
tool in diamond photonics.
In conclusion, we have experimentally demonstrated the

fundamental eigenmodes of subwavelength nanodiamonds. We
have used chemical vapor deposition of large nanodiamonds
from detonation seeds and subsequent scattering spectroscopy
to reveal the eigenmodes of single nanodiamonds. We have

Figure 4. (a) Scattering by an anisotropic diamond nanoparticle with
an effective diameter of 394 nm and a circularity of 0.84. The
scattering at the wavelength of 700 ± 5 nm is shown as a function of
the illumination polarization. A scanning electron micrograph of the
particle is shown in the inset. The particle orientation is shown in the
background. (b) Scattering spectra for the anisotropic nanodiamond
for two perpendicular polarizations. (c) FDTD-simulated spectra of
scattering by a prolate spheroid with a long axis of 400 nm and a short
axis of 330 nm on a sapphire substrate under the experimental
collection conditions.

Figure 5. Purcell effect in a free-standing diamond sphere with a
diameter of 2r = 320 nm. (a, b) Dependence of the Purcell factor on
the wavelength in a vacuum and the distance z between the center of
the sphere and the dipole. The dipole is oriented (a) along the radius;
(b) tangentially. The plots have the same color scale. (c) Efficiency of
the scattering by the sphere contributed by the electric (e) and
magnetic (m) dipoles (ed, md) and quadrupoles (eq, mq).
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shown that the magnetic dipole and quadrupole modes are the
most dominant in the visible range. The results have been
verified by calculations performed both analytically and
numerically. The magnetic dipole and magnetic quadrupole
modes of single nanodiamonds have been shown to shift with
increasing particle size; in the case of an anisotropic particle, the
modes are modified by varying the input light polarization
orientation. The importance of taking diamond eigenmodes
into account has been demonstrated by the almost two-order
enhancement of the Purcell factor in the case of magnetic
quadrupole resonance of a subwavelength nanoparticle
compared with that of a nonresonant nanoparticle.
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