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Accepted: 17 August 2017 . conventional techniques requires the use of femtosecond lasers and sophisticated time-gated optical
Published online: 13 September 2017 : detection. Here we demonstrate that by exploiting quantum interference of entangled photonsiit is

. possible to measure the dephasing time of a resonant media on the femtosecond time scale (down

to 100fs) using accessible continuous wave laser and single-photon counting. We insert a sample in

the Hong-Ou-Mandel interferometer and observe the modification of the two-photon interference

pattern, which is driven by the coherent response of the medium, determined by the dephasing time.

The dephasing time is then inferred from the observed pattern. This effect is distinctively different from

the basic effect of spectral filtering, which was studied in earlier works. In addition to its ease of use,

our technique does not require compensation of group velocity dispersion and does not induce photo-

damage of the samples. Our technique will be useful for characterization of ultrafast phase relaxation

processes in material science, chemistry, and biology.

Upon coherent light excitation of a media, its evolution is basically described by two processes: the nonequilib-
rium population decay and dephasing (or disorientation) of the induced dipole moments. The latter process is
determined by phase relaxation (dephasing) time T,'. Accurate measurement of T} is essential for characteri-
zation of a number of processes including, atomic collisions, molecular vibrations, studies of surface states and
others?”.

For many processes, T, lies within the femtosecond time scale and is typically measured by the methods of
time-resolved spectroscopy’®°. These techniques are universally applied to both optically thin and thick samples,
as it allows accounting for an additional spectral broadening of resonant absorption lines'. The techniques are
capable of resolving the homogenous dephasing time T, from the total dephasing time T,, which accounts the
additional broadening due to inhomogeneity of a surrounding medium1/T, = 1/T, + 1/T,, where T} is inho-

. mogeneous life-time’. The homogenous dephasing time is limited by the energy relaxation time T},

/Ty = 1/2T; + 1/Tf*", where T#*" corresponds to the pure dephasing processes e.g. spectral diffusion (T is

. often significantly larger than Tf*")!. However, implementation of the time-resolved spectroscopy faces a number
of practical challenges. First, it requires the use of a femtosecond laser system with pulse duration significantly
less than the T,. Second, signal detection with adequate temporal resolution requires the use of nonlinear
wave-mixing processes. Moreover, femtosecond pulses have an inherently high peak power, and one has to be
careful not to damage and/or modify the sample under study. At the same time, dephasing time T, reflects itself
in the coherent transient phenomena, which in principle can be measured with linear methods. For example,
free-induction decay was measured using interferometric methods with broadband incoherent light!!~*3.
However, the limitation of that method is that it still suffers from group velocity dispersion.

Here we report on a new approach which allows measurement of the dephasing time T, which in general case
corresponds to an inhomogeneously broadened optical transition, with femtosecond time resolution without the
need of a femtosecond laser and a sophisticated detection system. We exploit the unique properties of quantum
entanglement, which have already gained momentum in addressing a variety of practical applications, including
secure communication'*""’, metrology'®'° and sensing?-?2.

We generate entangled photons via spontaneous parametric down conversion (SPDC)?* and build the
two-photon interference setup, known as the Hong, Ou and Mandel (HOM) interferometer. In the HOM inter-
ferometer, two indistinguishable photons interfere on a 50/50 beam splitter and then are detected by two single
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Figure 1. The experimental setup. (a) Principal scheme. The pump from a cw-laser passes through a nonlinear
crystal (NLC). The SPDC radiation is fed into the interferometer by a set of mirrors (M). Sample (S) is placed
in one of the arms of the interferometer. The time delay T is induced by a mirror on a translation stage. Photons
interfere at a 50/50 beamsplitter (BS) and then are detected by avalanche photodetectors (D1 and D2). Signals
from detectors are sent to a coincidence counting scheme (CC). (b) Experimental setup. A 407 nm cw-laser

is focused by a lens (L) onto a BBO crystal cut for type-I SPDC. The SPDC radiation is fed into two single
mode fibers (SMF) and then coupled into the interferometer. Sample (S) is placed in one of the arms of the
interferometer. An imaging system consisting of two confocal lenses (L) allows observation of a sample on a
CCD camera. Time delay T is introduced by a motorized translation stage. The half-wave plate (HWP1) rotates
the polarization at 90 deg and the two beams in the interferometer are combined on a polarization beamsplitter
(PBS1). A half-wave plate (HWP2) rotates polarization at 45 deg, and the interference is observed at the output
of the PBS2. In HOM interference the photons are detected directly by avalanche photodiodes (D1, D2)
connected to a coincidence circuit (CC); for spectral measurements we use a grating spectrometer.

photon photodetectors?. Destructive interference of probability amplitudes results in the observation of a pro-
nounced dip in the dependence of coincidences of photocounts on the optical delay referred to as the HOM dip.
Conventionally, the HOM interference dip has a symmetric shape, which is defined by the Fourier transform
of the power spectrum of entangled photons. The width of the dip is inversely proportional to the coherence
time of the photons (typically at the order of few tens to hundreds of femtoseconds)*-?’. It has been shown that
when entangled photons propagate through dispersive media the shape of the HOM dip is not affected by the
odd orders of dispersion®*-*. This effect is referred to as dispersion cancellation and it is central to the quantum
optical coherence tomography?!. A related effect of quantum beatings reveals itself in oscillations in the HOM dip
for partially distinguishable photons®2->%.

It is important to note that in some situations, the shape of HOM interference cannot be described only by
the spectral profile. For example, it was shown that the phase acquired by the photons due to even orders of dis-
persion causes elongation of the dip and its asymmetric oscillations®*~*’. Moreover, modifications of the dip can
be caused by any process, which implies an asymmetric spectral phase difference even without modifications to
the spectrum?.

Here we consider the propagation of entangled photons through a resonant medium introduced in one arm of
the HOM interferometer. In this case, the photon can be treated as a small-area pulse, and the shape of HOM dip
is now affected not only by the spectral transmission of the medium, but also by a phase acquired due to coherent
response of the resonant medium under a single photon excitation®”*. This effect is distinctively different from
the basic spectral filtering approach.

Using the theoretical analysis, we infer the dephasing time T, from the shape of HOM dip. Due to the fact that
coherence length of entangled photons is on the order of tens-hundreds of femtosecond we are able to measure
dephasing time on the femtosecond time scale even though entangled states of light are generated using a contin-
uous wave (cw) laser. To the best of our knowledge, the influence of the coherent response of the medium on the
shape of the HOM dip was not reported earlier.

Materials and Methods
Theoretical considerations for a resonant medium. We consider the HOM interferometer with a res-
onant medium in one of the arms, see Fig. 1a. A biphoton field, produced via SPDC, can be represented as

f dwdw,F(w;, w,)|w)|w,) = f dwdw,F(w,, wy)a, (w)a, (w,)]0), 1)

where F(w,, w,) denotes the biphoton field amplitude and a;"(w,) denotes the creation operator at frequency w,
i=1,2.
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In one arm of the interferometer, we introduce an optical delay element with the transmission function ¢(w)
(in the absence of losses |¢(w)| = 1). In another arm we introduce a resonant medium described by a transfer
function H(w). Then Eq. 1 can be rewritten as:

[¥) = [/dwldwzF(Wl» wz)aﬁ(wl)a;(wz)¢(w1)H(w2)|0). (2)

After passing through the beamsplitter the state changes to

) = // dwdw,F(wy, w))[by (w)by (w,) — by (w)by (w,)+
+ib1+(w1)b1+(wz) + ib;(wl)b;(wz)]¢(UJ1)H(UJ2)|0)» 3)

where b, (w,) is a creation operator at the output of the beamsplitter. The coincidence count rate between the two
detectors is determined by the first two terms in Eq. 3. After redefining the integration variables, the relevant part
of the state can be written as follows:

) = %f dwdw,[F(wy, w,)p(w)H(w,) — Flw,, w)d(w,)H(w))]|w), w,). @

We can now analyze the dependence of the coincidence count rate on the time delay, assuming that in a typical
experiment the time window of the coincidence circuit (typically a few ns) is much larger compared to the coher-
ence time of the field. In this case, the coincidence count rate is given by:

k= [/dwldw2|(w1, W )P (5)

Substituting|1/,) and taking into account that in the absence of losses |¢(w)| = 1, we can rewrite Eq. 5 in the
following way:

1
R =1 [[dodis Few, wpH@P + [Foy w)HE@)P
- zm{F*(WP w,)F(w,, w1)H*(WZ)H(W1)¢*(W1)¢(W2)}» (6)

where we assume that the time delay is introduced by an optical element without dispersion, and ¢(w) = ¢™". For
the SPDC pumped by a cw-laser the biphoton field has a strong frequency anticorrelation and the state described
by Eq. 1 can be represented as

[v) = deF(V)Ll1+(UJ0 - V)ﬂ;(wo + v)[0),

where wj is the central frequency of the biphoton field, and v is detuning from the central frequency. Then,
Eqs 2-6 can be rewritten in terms of w, and v, and the coincidence count rate is given by

P(r) = i f dv|F)H(wy — 1)} + [F@)H(w, + )P
— 2R{|F(W) P H"(w, — )H(w, + v)e 7). ?)

Equation (7) shows the relationship between shape of the HOM dip and the linear transmission spectrum. We
assume that the resonant medium is a two-level system with a Lorentzian line shape

ib
v—Q+ilT,

>

H(wy, + v) = exp{—

®)

whereb = aL/2T,, oL is the optical thickness (o is a Bouguer coefficient and L is the length of the medium, and
aL <1 for an optically thin sample), T, is the dephasing time, which in general accounts for an inhomogeneous
broadening, and Q) = w,,; — wy, where w,,, is the resonant frequency.

The effect can be explained from the point of polarization of the medium, induced by a photon, or short-pulse,
excitation. This transient polarization persists within the dephasing time T, and reshapes the propagating photon.
This reshaping reveals itself in the dependence of the coincidence rate in the HOM interferometer. Substituting
Eq. 8 in Eq. 7 we can estimate the dephasing time T, of the medium from the acquired dependence of a coin-
cidence count rate on time using fitting parameters. First, we numerically study the cases for resonant and
non-resonant media, and then perform experiments with two different resonant samples: an Nd:YAG crystal and
an array of nanoparticles made of amorphous silicon (see Samples). A simple analytical solution for the case of a
single resonant line can be found in the Supplementary Materials.

Spectral function of the biphoton field. The spectral amplitude of biphoton field F(v) consists of two
components: the phase matching function of the nonlinear crystal F,,(v), which determines the width of SPDC
spectrum, and the transfer function of the filter, placed in front of the detector ®(v). This yields

F) = Fy(n)®(). ©)
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Figure 2. Characterization of the biphoton field. (a) Normalized transmission of the interference filter (black)
and spectrum of SPDC (red). Their convolution (blue) determines the spectral shape of the biphoton field used
in the experiment. (b) The HOM dip without samples. Experimental results (black) are fitted by Eq. 7 (red) with
measured parameters of the biphoton field.
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Figure 3. Results for the Nd:YAG crystal. (a) The transmission spectrum of the 8 mm long Nd:YAG crystal
(red), restricted by an interference filter (black dots and yellow shaded area). The intensity is normalized to
the transmission by the filter. Blue roman numbers denote individual absorption lines. (b) The HOM dip with
the Nd:YAG crystal in one arm of the interferometer. Experimental results (black) are fitted by Eqs 7-9 (red)
with the fixed parameters of the biphoton field and the sample, and T, for each of the five lines being a fitting
parameter.

In type-I frequency-degenerate SPCD, which is used in our experiment, the photons in a pair have the same
polarization so that

2y
D"L
Fy,(v) o LCX(Z)EPumPsinc[ v ‘J,

where L, is the length of the nonlinear crystal, x @ is the nonlinear susceptibility, Ey, is the pump field ampli-
tude, D” = d’k/dv* is the group velocity dispersion in the crystal at the frequency of the SPDC field. The SPDC
field is restricted by a filter with a trapezoidal shape |®() *, where an imaginary part of ®(v) is determined by the
Hilbert transformation. The spectral function of the biphoton field is derived from Eq. 9 using the measured
SPDC spectrum and the transmission curve of the filter, see Fig. 2a. The former has a full width on a half maxi-
mum AN, ,, =22nm, and the latter is modeled by a trapezoidal function with a top width of 15.5 nm and side

slopes of 3.3 nm.

Samples. The Nd:YAG crystal (Nd concentration 1%; 8 mm length; antireflection coated facets for 800 nm)
has a strong absorption line at 808 nm and four satellite lines in the range 804-822 nm, which are within FWHM
of the interference filter, see Fig. 3a, where the roman numerals denote the corresponding line numbers. From the
obtained spectrum we determine the detuning from the center of the biphoton field for each line: O'=7.5nm,
Qf'=3.1nm, Q"= —1.55nm, Q'Y= —6nm, QV = —9.9 nm, where the upper index denotes the line number. We
estimate the corresponding optical thicknesses to be aL'=1.95, aL"=2.35, aL™=2.9, aLV =7.2, aLV =3.6.
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Figure 4. Results for the nanostructure. (a) The transmission spectrum of the nanostructure (red), restricted
by the interference filter (black dots and yellow shaded area). The intensity is normalized to the transmission
of the filter. The inset shows a SEM image of the array of Si nanodiscs with the diameter of 200 nm, disc
height of 150 nm and pitch of 550 nm. (b) The HOM dip obtained with the nanostructure in one arm of the
interferometer. Experimental results (black) are fitted by Eqs 7-9 (red) with the measured parameters of the
biphoton field and the sample. The T, is inferred from the fit as the only free parameter.

The second sample consists of Si nanodiscs with a diameter of 200 nm, disc height of 150 nm and pitch 550 nm
on a quartz substrate (see inset at Fig. 4a) covered by a polydimethylsiloxane (PDMS) layer for refractive index
matching. The sample exhibits a strong narrow resonant dip in transmission at 818 nm. This dip corresponds to
a mode inside the array excited due to the interaction of magnetic resonances in the single nanoparticles cou-
pled through a diffraction order propagating along the array*~**. From the measured spectrum, we obtain the
detuning from the central frequency of the biphoton field (Q =4.4nm) and the optical thickness of the sample
(aL=4). It is important to note that since this sample consists of a single layer of resonant nanoparticles and its
transmission is determined by the resonant interactions of the nanoparticles within the array, the optical thick-
ness of the sample cannot be further reduced without losing its resonant properties. Thus this case corresponds
to a situation when conventional transmission spectroscopy cannot be adequately applied for identification of T,
while the proposed methodology can successfully accomplish this task.

Experimental setup. We produce photon pairs in a 0.8 mm long BBO crystal (Dayoptics) cut for type-I
SPDC (e — 00) and pumped by a cw-laser at 407 nm (PhoxX 405-60 Omicron), see Fig. 1b. The pump laser
power is set at 60 mW and the beam diameter is of 1.4 mm. Photons pairs are produced in a frequency degenerate
non-collinear regime with emission angles § = +3 deg with respect to the pump beam. The photons are coupled
into two single mode fibers (SMF) with fiber paddles in both arms used for polarization control. The SPDC spec-
trum has a bandwidth of 22 nm, as it is defined by the phasematching conditions and coupling to SMFs*.
Additionally, we use an auxiliary laser (at 814 nm) which facilitates alignment of the interferometer (not shown).
The beams at the input of the HOM interferometer have the same polarization. The half wave plate (HWP1) set at
45 deg is placed in one of the arms, and the beams are recombined on a polarizing beamsplitter (PBS1). In one
arm of the interferometer we introduce a delay line using a motorized translation stage (Owis) with a translation
step of 0.5 um. In another arm we place a telescopic 1:1 imaging system, consisting of two lenses with f= 50 mm,
which focuses the beam onto the sample (a spot size at the sample is 16 um). A light from a halogen lamp (HL) is
fed into the imaging system with a dichroic mirror (DM) and the image of the sample is captured by a CCD cam-
era (Thorlabs). The beam combined at PBS1 passes through a half-wave plate (HWP2) set at 22.5 deg, which
rotates the polarization by 45 deg and makes the photons indistinguishable. The photons are then split at a polar-
izing beamsplitter (PBS2) and coupled into two single mode fibers. We use an interference bandpass filter (IF;
FF01-820/12-25, Semrock) tilted by 9 deg to tune its central transmission wavelength to 815nm with
FWHM =21 nm. In the setup there is a possibility either (1) to connect the output of the fibers to a home-build
grating spectrometer (resolution of 0.2 nm) for the spectral measurements, or (2) directly to single photon ava-
lanche photodetectors (D1, D2; SPCM-AQR-14FC, Perkin Emler) for HOM dip measurements. Signals from the
detectors are sent to a coincidence counting scheme (Ortec, TAC 556) with a time window of 3 ns. Typical acqui-
sition time for each sample was about 10-15 min, depending on the sample transmission. The obtained results are
then fitted with the theory using Matlab and Origin software.

Results and Discussion

Numerical considerations. Here we demonstrate the difference between results obtained for non-resonant
and resonant medium placed into the HOM interferometer. We consider the spectral amplitude of the bipho-
ton field F(v) as described above in Methods, with both the filter function and the SPDC spectrum centered at
815 nm. First, we consider the situation when a non-resonant medium is placed into the interferometer and acts
as a notch-filter. We model the transmission profile of the non-resonant medium with a Gaussian function:
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Figure 5. Numerical simulations. (a) Results for a non-resonant medium modeled by the Gaussian function
with 0 =2 THz and Q =2 THz, the biphoton field is centered at 815 nm. (b) Results for a resonant medium
modeled by the Lorentzian function with oL =4, T, =475fs, and Q2 =2 THz, the biphoton field is centered at
815 nm. The two plots are distinctively different as the dip becomes asymmetric and elongated for the case of the
resonant media.

1
Hy)=1— ex
((7227T)0'25 P{ 4072

where o is the parameter of the width linked with FWHM as Av,,, = 2~/2 In2 0, v stands for the frequency
detuning from the central wavelength, and Q is the frequency detuning of the center of the transmission profile
for the non-resonant medium from the center of the biphoton field. In our calculations we consider the following
parameters 0 =2 THz (4.5 nm), and Q =2 THz. We substitute the parameters for the modeled medium and the
biphoton field into Eq. 7 and calculate the shape of the HOM dip (Fig. 5a). Our calculations show, that the dip
keeps its symmetry and it has a visibility equals to unity.

Next, we simulate the case of the resonant medium. It is modeled by a 2-level system with a Lorentzian shape
of the transfer function with the following parameters: L =4, T, =475fs, and Q =2 THz, see Eq. 8. The param-
eters of the incident biphoton field remain the same as in the previous case. The results of calculations using Eq. 7
are presented in Fig. 5b. It is clearly seen, that unlike in the previous case, the HOM dip takes an elongated and
asymmetric shape. This confirms that the shape of HOM dip reflects the phase acquired by the photon due to the
coherent response of the resonant medium.

Experimental results. First we measure the HOM dip without any sample, see Fig. 3b. Our results show
good quality of the entanglement with the uncorrected interference visibility of 92 £ 0.3%. The experimental
results in Fig. 2b are fitted by Eq. 7, assuming that in the absence of a sample H = 1, and with the parameters of
the biphoton field described in Methods. The fit yields a coefficient of determination R?=0.988. Subsequently,
parameters of the biphoton field are used in the fitting of the experiments with the samples.

Then, we perform an experiment with the Nd:YAG crystal. We measure the transmission spectrum of the
crystal using the spectrometer, and find that there are five absorption lines within the biphoton spectrum, see
Fig. 3a. From the obtained spectrum we determine the detuning of each line from the central wavelength of the
biphoton field and the sample’s optical thickness. Then, we measure the HOM dip with the Nd:YAG crystal in one
of the arms of the interferometer. We find that the dip takes an asymmetric and elongated shape, see Fig. 3b. This
is attributed to a coherent resonant response of the medium?®”*’. Then we fit the interference pattern with Eqs 7-9
with the parameters defined from the spectrum and infer T, for each line. The best fit yields R*=0.933 with the
following values T, =620 £ 50fs, T, =660 £ 50fs, T,"M=415+30fs, T,/V =710+ 60fs, T,V =215 £ 20 fs, where
roman numerals denote corresponding resonant lines. We highlight that strong absorption in the sample results
in broadening and overlap of spectral lines. In this case, dephasing times cannot be directly estimated from the
spectral linewidths.

To ensure the validity of our method, we compare our results for the line IV (aL"V =7.2) with spectroscopic
data obtained for an optically thin Nd:YAG sample with similar Nd concentration®”. This line has the strongest
absorption among others, and it is used for pumping of solid-state lasers. Note, that for optically thin samples
(aL <1), the coherence time and width of the resonance are related as T, = 1/wrAv, ,'. Based on the literature
data, for an optically thin sample the line IV has the FWHM of about 1nm, which yields T, sample = 700 fs*.
This value is consistent with our measurements (T,!V =710 = 60 fs), thus ensuring the validity of our technique. It
was also shown that for a number of solids at room temperature, for example dielectric crystals doped with
rare-earth ions like Nd:YAG crystal, T,” dominates T,", and correspondingly T, ~ T, describes a homogeneously
broadened transition*®#.

Next, we apply the developed methodology to the case when the optical thickness of the sample cannot be
reduced without significant modification of its properties. We perform the experiment with an array of sili-
con nanodiscs with diffractively coupled magnetic dipole resonances (see Methods). Following the procedure
described above, we first measure the transmission profile of the sample, which possesses a single dip at 818 nm,
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see Fig. 4a. We then measure the HOM dip, which has elongated and asymmetric shape, see Fig. 4b. We fit the
obtained results using Eqs 7-9 with T, as a single fitting parameter. The fit yields T, = 130 & 15 fs with R*=0.971.
The measured T, is attributed to a dephasing time between the coupled magnetic dipole moments inside neigh-
boring Si nanoparticles constituting the resonant mode. It is analogous to the dephasing time of surface plasmon
polaritons in metal nanostructures and nanoarrays, which has been measured earlier using conventional ultrafast
spectroscopy techniques®*->2. It is important to note, that dephasing in these systems is attributed to the collective
excitation when an array works as a whole, and thus inhomogeneous and homogeneous broadening coincide®.
Considering a measured value of the FWHM of 12 nm from Fig. 4a, we obtain T, ~ 70 fs, which is almost two
times smaller rather than our experimental result. This discrepancy occurs due to the optical thickness of the
sample being larger than unity (oL =4), which broadens the linewidth and makes the direct calculation of T,
from the absorption spectra inadequate.

The temporal resolution of our technique is defined by the width of the spectrum of the biphoton field.
In our experiment, it is 20 nm, which corresponds to a resolution of about 35fs. It is on a par with existing
high-performance femtosecond laser setups. With readily available methods for generation of broadband bipho-
ton fields, it is feasible to achieve the temporal resolution down to a few femtoseconds or even less™>°. For exam-
ple, SPDC generated in chirped crystals® yields the spectral width of 300 nm, which corresponds to the temporal
resolution of 7 fs. Moreover, high tunability of SPDC source allows to cover different spectral ranges by selecting
different wavelength of a pump laser. Both, arbitrary shapes of resonant lines and spectral shape of a biphoton
field, can be always accounted in numerical calculations see Eq. 7.

Conclusion

In conclusion, we have demonstrated a new technique for measuring the dephasing time of a matter on the
femtosecond time scale. Our approach utilizes the effect of the quantum two-photon interference of entangled
photons. We showed that in the case of a resonant medium the shape of two-photon interference is determined
by not only spectral transmission but also by a phase acquired through interaction with a medium. The technique
uses entangled photons which are produced by a cw-laser, thus eliminating the need for complex and expensive
femtosecond laser setups. It allows the measurement of dephasing times in optically thick samples, for which
application of transmission spectroscopy is limited. Moreover, our approach does not suffer from the even orders
of group velocity dispersion, which is one of the limiting factors in conventional methods. The technique operates
at a single photon level and it can be useful for measurements of fragile biological, chemical and nanostructured
samples. We believe that the technique will contribute to further development of ultrafast time-resolved spectros-
copy in material science, biology, and chemistry.
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