
Ultrafast dynamics of Faraday rotation in thin films

Margarita I. Sharipova, Alexander I. Musorin, Tatyana V. Dolgova, and Andrey A. Fedyanin

Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

ABSTRACT

Femtosecond Faraday rotation evolution and a propagation of a femtosecond pulse through a thin magnetic films
is calculated and measured.
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1. INTRODUCTION

Photonic crystals are key elements of the all-optical devices concept providing a mechanism to control and
manipulate the flow of light. The embedding one or more magnetic layer leads to enhancement of magneto-
optical response of magnetophotonic crystal because of concentration of the light in magnetic media.1 These
optical cavities are attractive for optical communication system, spatial light modulators, holographic memory,
etc.2,3 The simplest case of optical cavity is a thin magnetic film. The magneto-optical signal in layered magnetic
samples is proportional to the thickness of the film and to the contrast of reflection indices of the film and the
environment. Various time-resolved techniques are used to study magnetization dynamics of a system perturbed
by a powerful femtosecond laser pulse.4,5 The evolution of light polarization within a single femtosecond pulse
in an unperturbed system is determined by a relation time duration of the pulse and traverse time of the pulse
inside a sample. If the duration is greater than traverse time,6 then the polarization rotation shouldn’t be large
because of small light-matter interaction time. On the contrary, if the traverse time is greater than duration of
the pulse, then light polarization evolution is more complex.

In this work, femtosecond Faraday rotation evolution and a propagation of a femtosecond pulse through thin
magnetic films is calculated and measured.

2. THEORY

2.1 Multiple Interference of monochromatic light in the Faraday-active Fabry-Perot
etalon

Suppose a monochromatic plane wave propagates in vacuum and goes through the parallel-sided plate with angle
of incidence equals to α. The electromagnetic field of the wave can be written as

~E0 = ~A0e
i(~k~r−ωt), ~A0 = A0

(
1
0

)
, (1)

If we neglect absorption, then we can describe optical properties of the plate, using just a few parameters: plate’s
thickness d, its refractive index n, reflectance and transmittance field amplitude at the plate’s border indices ρ
and τ , respectively. The connection between the parameters is following:

R = ρ2;T = τ2, R+ T = 1, (2)

sinα = n sinβ, (3)

δ = 2
ω

c
dn cosβ, (4)
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where R, T — reflectance and transmittance of the light intensity at the borders, β — angle of refraction, c —
speed of light and δ — phase difference between the transmitted light and light, which was reflected twice inside
the plate from its borders borders and came out. The resulting output light can be written as

~E = ~E0τ
2(1 + ρ2eiδ + ρ4e2iδ + ...) = ~E0τ

2
∞∑
m=0

(ρ2eiδ)m. (5)

After summing up:

~E = ~E0
τ2

1− ρ2eiδ
. (6)

The total transmittance T (δ) = I/I0 equals to:

T (δ) =
T 2

|1−Reiδ|2
;

or, in the real numbers:

T (δ) =
1

1 + F sin2( δ2 )
, (7)

where F — factor of sharpness. The formula was derived for the first time by Airy.7

F =
4R

(1−R)2
. (8)

Fig. 1 shows transmittance T versus phase difference δ with different values of F. The factor of sharpness defines
a magnitude of the oscillations according to Eq. (7): the more is the value of F, the bigger becomes the amplitude
of oscillation.
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Figure 1. Transmittance T versus phase difference δ with different F values. From top to bottom: F = 0.1; 1; 10.

In gyrotropic materials, such as Faraday-active media, the rotation of polarization plane will also be different
in each component:

~E = A0τ
2

((
cos θ
sin θ

)
+ ρ2eiδ

(
cos 3θ
sin 3θ

)
+ ρ4e2iδ

(
cos 5θ
cos 5θ

)
+ ...

)
; (9)

where θ is a Faraday rotation of the light after going trough the gyrotropic media with thickness d. Consequently,
the Faraday rotation is equal 2θ for light returned to origin after reflection from far border due to the non-
reciprocity of the effect. It’s easier to work in exponential notation:

~E = A0τ
2

((
eiθ+e−iθ

2
eiθ−e−iθ

2i

)
+ ρ2eiδ

(
ei3θ+e−i3θ

2
ei3θ−e−i3θ

2i

)
+ ρ4e2iδ

(
ei5θ+e−i5θ

2
ei5θ−e−i5θ

2i

)
+ ...

)
; (10)
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⇓

~E = A0τ
2
∞∑
m=0

(ρ2eiδ)m

(
eiθ(2m+1)+e−iθ(2m+1)

2
eiθ(2m+1)−e−iθ(2m+1)

2i

)
. (11)

As a result, one should sum up two projections separately:

~E = A0τ
2

 eiθ

2

∑
m

(ρ2eiδ+i2θ)m + e−iθ

2

∑
m

(ρ2eiδ−i2θ)m

eiθ

2i

∑
m

(ρ2eiδ+i2θ)m − e−iθ

2i

∑
m

(ρ2eiδ−i2θ)m

 ; (12)

~E = A0τ
2

 1
2

(
eiθ

1−ρ2ei2θ+iδ + e−iθ

1−ρ2e−i2θ+iδ

)
1
2ı

(
eiθ

1−ρ2ei2θ+iδ −
e−iθ

1−ρ2e−i2θ+iδ

)  ; (13)

~E =
A0τ

2

1 + ρ4e2ıδ − 2ρ2eıδ cos 2θ

(
(1− ρ2eıδ) cos θ
(1 + ρ2eıδ) sin θ

)
. (14)

Amplitude of the transmitted electric field:

| ~E| = A0τ
2

 √
1−2ρ2 cos δ+ρ4

1−4ρ2 cos δ cos 2θ+2ρ4 cos 2δ−4ρ4 cos2 2θ−4ρ6 cos δ cos 2θ+ρ8 cos θ√
1+2ρ2 cos δ+ρ4

1−4ρ2 cos δ cos 2θ+2ρ4 cos 2δ−4ρ4 cos2 2θ−4ρ6 cos δ cos 2θ+ρ8 sin θ

 . (15)

After normalizing the Jones vector of polarization

| ~E| = A0τ
2

√
1− 2ρ2 cos δ cos 2θ + ρ4

(1− 2ρ2 cos(δ + 2θ) + ρ4)(1− 2ρ2 cos(δ − 2θ) + ρ4)


cos θ√

1+ 4ρ2 cos δ sin2 θ

1−2ρ2 cos δ cos 2θ+ρ4

sin θ√
1+ 4ρ2 cos δ cos2 θ

1−2ρ2 cos δ cos 2θ+ρ4

 . (16)

Now we can write the resulting transmittance T output and total Faraday rotation Φ:

T output =
(1−R)2(1− 2R cos δ cos 2θ +R2)

(1− 2R cos(δ + 2θ) +R2)(1− 2R cos(δ − 2θ) +R2)
; (17)

Φ(R, θ, δ) = arctan

(√
1 +

4R cos δ

1− 2R cos δ +R2
tan θ

)
. (18)

In the case of θ → 0, T output turns into T.

Fig. 2 shows interference pattern of Faraday rotation. Without interference Faraday rotation equals to 0.02
radians, but in the presence of interference it varies from zero to 0.2 radians.

Fig. 3 shows transmittance T and Faraday rotation Φ. The transmittance maxima coincide with maxima of
Faraday rotation.

The more complicated analysis, taking into account magnetic circular dichroism, has been previously done.8

As we are mostly interested in pure Faraday effect studied in pulsed light, we decided to neglect arising ellipticity.
In the experiment the evaluated ellipticity was not greater than 10−5.

2.2 Multiple interference of pulsed light in the Faraday-active Fabry-Perot etalon

Suppose a single light pulse with a gaussian shape propagates through a gyrotropic medium. The incoming
electromagnetic field can be written as

~E0(t) = ~A0e
−(ω0t)

2

, ~A0 = A0

(
1
0

)
. (19)
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Figure 2. (Color online)left: Several subsection of Faraday oscillations for θ = 0.02 and ρ = 0.15; 0.35; 0.65; 0.9.
right: Faraday oscillations for θ = 0.02.
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Figure 3. Interference pattern of transmittance T and Faraday rotation Φ when θ = 0.2 radian and ρ = 0.5.

where ω0 = 1/τ0, and τ0 is a pulse duration. Then the output signal will be the sum of the pulses, repeatedly
reflected inside the film. The polarization of each reflection will be proportional to the distance passed inside
the media:

~E = A0τ
2

(
e−(ω0t)

2

(
cos θ
sin θ

)
+ ρ2eiδe−(ω0(t−∆))2

(
cos 3θ
sin 3θ

)
+ ρ4ei2δe−(ω0(t−2∆))2

(
cos 5θ
sin 5θ

)
+ ...

)
, (20)

where ∆ = 2nd/c, and equals to the time delay between the first transmitted pulse and its second replica
reflected inside the film. In the latter expression we denoted zero time t = 0 for the moment when maximum of
the transmitted pulse comes out of the plate.

~E = A0τ
2
∞∑
m=0

e−(ω0(t−m∆))2(ρ2eiδ)m
(

cos (2m+ 1)θ
sin (2m+ 1)θ

)
. (21)

Then the resulting Faraday Φ rotation will be:

Φ = arctan


∑
m
e−(ω0(t−m∆))2(ρ2eiδ)m sin(2m+ 1)θ∑

m
e−(ω0(t−m∆))2(ρ2eiδ)m cos(2m+ 1)θ

 . (22)

The control parameter in this expression is ω0∆ — that combination is the ratio between time which light spends
inside the film ∆ and pulse duration τ0.
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The expression (22) holds absolute convergeness, as majorized by harmonic geometric progression. However,
there is no simplification for these series. In order to analyze the results, let us consider three cases with different
values of operating parameters.

1. Case ω0∆� 1.

This inequality holds true when the time of pulse transmitting through the film is much shorter than the
pulse duration, i.e., the steady-state case. For that we can neglect small changes in index of exponential
part:

e−(ω0(t−m∆))2 = e−(ω0t−mω0∆)2) ≈ e−(ω0t)
2

. (23)

Consequently, we may take the exponent out of the sum in equation (22):

Φ = arctan

 e−(ω0t)
2 ∑
m

(ρ2eiδ)m sin(2m+ 1)θ

e−(ω0t)2
∑
m

(ρ2eiδ)m cos(2m+ 1)θ

 = arctan


∑
m

(ρ2eiδ)m sin(2m+ 1)θ∑
m

(ρ2eiδ)m cos(2m+ 1)θ

 = Φ(R, θ, δ).

(24)
As we might anticipate, the resulting Faraday rotation does not depend on time. We see that this case
comes to the previous subsection of steady-state Faraday rotation (see expression (18)).
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Figure 4. (Color online) (a) and (c) Projections Ex, Ey versus time. (b) and (d) Faraday rotation versus time. θ =
0.1 radian, ρ = 0.2. (a) and (b) corresponds to ω0∆ � 1 case. (c) and (d) corresponds to ω0∆ � 1 case.

Fig. 4 (a,b) shows calculated projections Ex, Ey and Faraday rotation versus time. We have summed first
150 components in the expression (22). The values of the parameters were: τ0 = 100 fs,⇒ ω0 = 1013 1/s,
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∆ = 2 fs, ρ = 0.2, and θ = 0.1 radian. As was expected, the output pulse is gaussian. Faraday rotation is
constant.

2. Case ω0∆� 1.

This inequality means that subsequent replicas do not overlap in time. This is correct in case of thick
material and short pulse. As each component is independent and does not sum with each other, it is
possible to remove the sum sign. In this assumption we can simplify the expression (22) for Φ, as we might
neglect all components of sum except one in a given time interval:

if t ∈ [∆(m̃− 1

2
, m̃+

1

2
)], then

∑
m

e−(ω0(t−m∆))2f(m) ≈ e−(ω0(t−m̃∆))2f(m̃) (25)

We should keep in mind that the sum index m and time t are related. We can now calculate the output:

Φ(t) ≈
∑
m

arctan

(
e−(ω0(t−m∆))2ρ2m sin(2m+ 1)θ

e−(ω0(t−m∆))2ρ2m cos(2m+ 1)θ

)
; (26)

Φ(t) = arctan

(
sin(2m+ 1)θ

cos(2m+ 1)θ

)
= ((2m+ 1)θ) ; (27)

where sum index m =
[
t
∆

]
+ 1 and defined by how many pulse replicas were transmitted through the

sample at that time.

Fig. 4 (c,d) shows calculated projections Ex, Ey and Faraday rotation versus time. We have summed first
150 components in the expression (22). The values of the parameters were: τ0 = 100 fs,⇒ ω0 = 1013 1/s,
∆ = 2000 fs, ρ = 0.2, and θ = 0.1 radian. The Faraday rotation evolution is a step-like function. Electric
field profile is a number of pulse replicas with gaussian line shapes. The magnitude of a replica x field
component decreases with time due to transversion to y component as well as reflection and transmission
components. Simultaneously magnitude of y field component of each replica decreases due to reflection
and transmission components as well as x field component but increases due to polarization rotation.

3. Case ω0∆ ∼ 1.

This case happens when pulse duration is comparable with the in-plate propagation time. In that condition
there is a significant influence of interference effects. However, this case is hard to analyse, as there is no
components on Eq. 22, which we can neglect. Thus, it is hard to give even qualitative assesment.

3. NUMERICAL CALCULATIONS OF FEMTOSECOND FARADAY ROTATION
AND PULSE EVOLUTION IN THIN FILMS

As was previously mentioned, we have got expression (22) for Faraday rotation of pulsed light while using several
simplifications. We have worked in linear basis, though the symmetry of the problem suggests circular basis.
As a result, we didn’t take into account the difference of coefficients ρ, τ for left- and right- circularly polarized
light. Though this is not critical, we have decided to check the theory by performing numerical simulations. In
addition, theoretical approach will be inapplicable in case of more complex structures, such as photonic crystals.9

The calculations of Faraday rotation dynamics and a femtosecond pulse propagation through a thin magnetic
film were made by the 4x4 transfer-matrix formalism and the fast Fourier transformation. The permittivity
tensor of the sample is non-dispersive:

ε̂ =

 7.84 −0.0055i 0
0.0055i 7.84 0

0 0 7.84

 . (28)

A spatial length of the pulse has been fixed L = 45 µm. It corresponds to time duration of the pulse of 150 fs.
We have varied the film thickness d as in Sec. 2. Three cases of relation between L and nd have been studied:
L >> nd, L ∼ nd, L << nd.
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The time evolution of a single femtosecond pulse which has passed through the sample is shown on Fig. 5 (a).
The zero time corresponds to the moment when maximum pulse intensity reaches the second border of the
structure, while inferred film with refractive index n = 1. Let the light enter the film at the interface ‘1‘ and
exit at the interface ‘2‘.
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Figure 5. (Color online) The result of numerical simulation of a single femtosecond pulse propagation through a thin
magnetic film (a) and a femtosecond polarization rotation evolution for three cases of ratio between the spatial pulse
duration L and the sample’s optical thickness nd. A dash line is an envelope of incoming pulse. The pink line corresponds
to L >> nd case, blue and red — L ∼ nd, the green line — L < nd.

Let us describe the case L < nd (Fig. 5 (a), a green line). The maximum of the first transmitted part of the
pulse reaches the interface ‘2‘ at 260 fs. Maximum of the double reflected in the film pulse exits at 780 fs. The
time difference between the first and second transmitted pulses is approximately 500 fs and “tails” overlapping
can be neglected.

In the case L ∼ nd (see Fig. 5 (a), blue and red lines) the maxima of the pulses come at the time ∼150 fs
and ∼440 fs. In this case “tails” are overlapping in time. And interference effects can be found in overlapping
area depending on the phase relation between the pulse parts.

In the case L >> nd (see Fig. 5 (a), pink line) the pulse passes through the film almost like a steady-state
signal. Numerical simulation of the Faraday rotation evolution (pink line) for this case is shown in Fig. 5 (b).
These results correspond well with the theory (for comparison see Fig. 4).

In the case L ∼ nd (see Fig.5 (b), blue line) there is an area with negative time derivative. It can be
explained by destructive interference of transmitted part pulse “tail” and double reflected one. But for the same
case L ∼ nd a positive derivative is also possible (see fig. 5 (b), a red line), when the interference of the pulses
is constructive.

In the case L < nd the Faraday rotation time dependence (see Fig.5 (b), green line) is a step-like function
because the “tails” don’t overlap. The value of the step is three time larger than initial polarization rotation due
to triple optical path of double reflected part of the pulse.

Let us explain the effect qualitatively (see Fig.6 (left)). Let the light propagates in Z direction through the
film placed in xOy plane. The plane xOy in Fig. 6 (left) is an the interface ‘2‘. Let the electric field of the once

transmitted pulse ~E1 is under Faraday rotation θ1 to axis Y . After two reflections inside the film a phase of the
electric field ~E2A is close to the phase of transmitted pulse ~E1. Polarization rotation of double reflected pulse
~E2A is θ2A. And “tails” are overlapped. Then superposition ~EAof electric fields is rotated under θA. I.e. in first
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Figure 6. (Color online) left: Scheme of electric fields superposition of transmitted and double reflected parts of the pulse
propagated through the film. Blue arrows — electric fields of the pulse parts, a red arrow — superposition of fields in
constructive interference case, a green arrow — in case of destructive interference. right: Experimental setup. Input
pulse goes into Glan-Taylor prism, which works as polarization beam splitter and divides into signal and reference pulses.
Reference pulse goes through a variable delay line and signal pulse goes through a sample placed in magnetic field. If
the sample is Faraday-active, then vertical polarization component of the signal pulse is modulated at the double PEM
frequency. Autocorrelation function of the input pulse is shown in the center of the figure, it has gaussian line shape.

part of the pulse the rotation is θ1, at overlapped moment — θA > θ1 and in second part is θ2A > θA > θ1.
Thus, Faraday rotation is increasing with time due to constructive interference.

If the phase of double reflected pulse is opposite to the transmitted one, the electric field ~E2B is under Faraday
rotation θ2B . I.e. in first part of the pulse the polarization rotation is θ1, in the second part of the pulse the
rotation is θ2B > θ1. Superposition of electric fields of the pulses in overlapped area gives an electric field under
Faraday rotation θB . So the polarization θB is less than θ1 as well as θ2B . Thus, Faraday rotation is decreasing
with time due to destructive interference in overlapped area.

To sum up, in case L ∼ nd the behavior of Faraday rotation time evolution (increasing or decreasing with
time) depends on multiple reflection interference: it increases with time for constructive interference and decreases
with time for destructive interference.

4. EXPERIMENTAL

Figure 6 (right) shows principal scheme of the experimental set-up. It is based on a modified correlation tech-
nique10 combined with polarization-sensitive part, which uses photoelastic modulator.11 Horizontally polarized
pulses go out of an infrared femtosecond laser with following parameters: 1.56-µm wavelength, 130-fs pulse
duration 70-MHz repetition rate and 140-mW average intensity. The pulse electromagnetic field can be written
as

~E(t) = E0(t)

(
1
0

)
;

When quarter-wave plate is rotated on 45◦ relative to the incoming pulse polarization, the resulting wave will
be circular:

~E(t) = E0(t)
1√
2

(
1
ı

)
;

Due to quarter-wave plate Glan prism divides input beam into two beamlets: signal pulse with vertical polar-
ization and reference pulse with horizontal one. The reference pulse goes through a variable delay line, which
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causes time delay τ :

~Eref (t) =
E0(t− τ)

2

1√
2

(
0
1

)
;

The electric field of signal pulse is

~Es(t) =
E0(t)

2

1√
2

(
1
0

)
;

Signal pulse goes through the sample at normal incidence. The sample is placed in a 1-kOe static magnetic field,
which is oriented parallel to the wave vector of light. After passing the sample the polarization of signal pulse
differs from vertical polarization — it is rotated at the angle Φ(t):

~Es(t) =
E0(t)

2

1√
2
T̃ (t)

(
cos Φ(t)
sin Φ(t)

)
.

The shape of the pulse has also been changed, which is expressed by the insertion of parameter T̃ (t). In this
equation we neglected ellipticity of the pulse. Usually, the magnitude of the effect is rather small: Φ� 1. Vertical
component of light then becomes modulated by HINDS photoelastic modulator (PEM) with vertically oriented
optical axis and eigenfrequency f = 47 kHz, which periodically changes delay between x and y components of
the electric field in optical wave:

~Es(t) =
E0(t)

2

1√
2
T̃ (t)

(
cos Φ(t)eA cos(2πft)

sin Φ(t)

)
,

where A — retardation amplitude of the photoelastic modulator. In the experiment A = 2.405 due to the
special considerations mentioned below. After being reflected from several mirrors both pulses with mutually
perpendicular orientations become parallel. The polarization orientation of the pulses becomes the same after
going through the 45◦-oriented second Glan prism:

~Es(t) =
E0(t)

2
√

2

T̃ (t)√
2

(
cos Φ(t)eιA cos(2πft) + sin Φ(t)
cos Φ(t)eιA cos(2πft) + sin Φ(t)

)
;

~Eref (t− τ) =
E0(t− τ)

2
√

2

1√
2

(
1
1

)
.

Both pulses are then focused at the same spot on non-linear 500-nm-thick BBO crystal by a 50-mm convex lens. If
the time delay between two pulses is not very big, then they overlap and generate non-collinear second-harmonic
in the direction of bisector:

~ESHG(t) ∝ ~Es(t) ~Eref (t− τ) =
E0(t)E0(t− τ)

16
T̃ (t)

(
cos Φ(t)eιA cos(2πft) + sin Φ(t)
cos Φ(t)eιA cos(2πft) + sin Φ(t)

)
.

Blue filters don’t pass scattered pumping and the aperture cuts non-useful signal from collinear second harmonics.
Thus, the resulting intensity is

ISHG(t) ∝ | ~Es(t) ~Eref (t− τ)|2 =

(
E0(t)E0(t− τ)

16

)2

2T (t){1 + cos(A cos(2πft)) sin 2Φ(t)}.

where T (t) reflects the difference in the intensity temporal profile. A signal collected by photodiode integrates
ISHG in the time domain:

u(τ) =

∞∫
−∞

(
E0(t)E0(t− τ)

16

)2

2T (t){1 + cos(A cos(2πft)) sin 2Φ(t)}dt =

=

∫
I0(t, t− τ){1 + cos(A cos(2πft)) sin 2Φ(t)}dt.
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The time limits are (−∞;∞), but in the experiment it shrinks to time interval ≈ 10−12 s where both pulses have
non-zero intensity. Using Jacobi-Anger expansion:

cos(A cos(2πft)) = <{eA cos 2πft} = J0(A0) + 2<{
∞∑
n=1

ιnJn(A0) cos(2nπft)} =

= J0(A0) + 2

∞∑
n=1

(−1)nJ2n(A0) cos(4nπft).

Leaving only two summands in the expansion (supposing that high orders of sum are negligible) and putting
selected retardation A0 = 2.405 (due to the fact that J0(A0) = 0), we get

cos(A cos(2πft)) = J0(A0)− 2J2(A0) cos(4πft)|A0=2.405 = −2J2(2.405) cos(4πft) ≈ 0.86 cos(4πft).

Thus, the detected signal consists of two components — dc one and high-frequency addon:

u(τ) =

∫
I0(t, t− τ){1− 0.86 cos(4πft) sin 2Φ(t)}dt

As PEM period of oscillation 1/f ≈ 10−5s is much bigger than the time of integration (≈ 10−12 s, comparable
with pulse duration — 130 fs), then cos(4πft) ≈ const = cos(4πft) during the integration time and can be
factored out of the integral:

u(τ) ≈
∫
I0(t, t− τ)dt− 0.86 cos(4πft)

∫
I0(t, t− τ) sin 2Φ(t)dt = udc(τ) + u2f (τ).

The measurement by the lock-in amplifier of these two components gives us a possibility to reconstruct the time
dependence of Faraday rotation Φ(t). It’s ratio gives us

Φ̃(τ) =
1

2

∣∣∣∣ u2f (τ)

0.86udc(τ)

∣∣∣∣ ,
The equation is correct in the assumption of sin 2Φ ≈ 2Φ� 1. Φ̃(τ) is an averaged magnitude of Faraday effect.
The slower the changes in Faraday effect — the closer Φ̃ comes to Φ. When there is no time dependence of
Faraday effect at all, e.g. Φ(t) = const, then the shapes of measured correlation functions udc(τ), u2f (τ) are

the same. If Faraday rotation dynamics exists, then Φ̃ 6= const and lineshapes of udc(τ), u2f (τ) differ from each
other.

The experiment has been done for the simplest case of a layered structure — the thin magnetic film. Two
films with thicknesses of 11 (ω0∆ = 0.5 < 1) and 30 µm (ω0∆ = 1.4 ≈ 1) on gadolinium-galium garnet substrate
were used. For the 11-µm film the ratio of pulse duration to the time for transmitting through the film is
relatively big — so the pulse seems to be the same as in quasi-steady state. Consequently, correlation functions
measured for this case have the same gaussian line shape, just as autocorrelation function.

Figure 7 demonstrates extracted from experimental data Faraday rotation evolution Φ̃(τ), which for this case
equals Φ, as there is no dynamics of Faraday rotation in 11-µm thick film. The zero time corresponds to the
maximum of correlation function.

The same 11-µm thick film was used for the measurements in case ω∆� 1 of the ratio of pulse duration to
the time for transmitting through the film is relatively small. To achieve this case the effective thickness was a
sum of film and substrate thicknesses. The measurement of such composite structure allowed us to detect the
second pulse rescattered inside the sample. Figure 7 shows obtained time-resolved Faraday rotation with first
and second steps of case ω0∆ = 50� 1. Its values differ in three times ≈ 1◦ and ≈ 3◦, which coincides with the
theory and calculations.

Figure 8 shows measured correlation functions at chopper and double PEM frequencies for the 30 µm-thick-
film. On both graphs a small shoulder at the right side of the correlation function is seen. These peculiarities
appear at the time 400 fs. The difference of correlation function from gaussian shape shows that Faraday
rotation is not contant. Though to extract direct dependence we had to make additional experiments and alter
the experimental setup.12
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Figure 7. (Color online) Femtosecond Faraday rotation evolution of a pulse transmitted through a 11-µm-thick film. Dots
— experimental results, line — calculations. At the times smaller than 200 fs the quasi-steady-state case ω0∆ � 1 is
applicable, at the times up to 6800 fs the case of thick film ω0∆ � 1 takes place.
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Figure 8. (Color online)(a) Correlation functions of a reference pulse and a signal pulse transmitted through a 30-µm-thick
film measured at the chopper frequency (black dots) and at the double PEM frequency 2f (red dots). (b) Zoom of 200-700
fs range of normalized correlation functions.

5. CONCLUSION

Femtosecond time dependence of Faraday rotation in magnetic films has been studied theoretically, numerically
and experimentally. We have separated three general cases: the film traversal time is less, greater and comparable
than the pulse duration. The first one is similar to steady-state case. There is no time dependence of Faraday
rotation. Faraday rotation is a step-like function of time for the second case. In the last case Faraday rotation
time evolution is strongly depends on the interference conditions. This withdrawal allows one to expect well-
controlled and stronger effects in high Q-factor structured materials, such as photonic crystals.
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